In the past, I have wrote blog posts on how to setup Google Kubernetes Engine (GKE) and deploy an application, and how to deploy a python endpoint using Azure Container Apps. This time, I will blog about how to setup Azure Kubernetes Service (AKS) and deploy a simple python application.

Prerequisites

1 - Install Helm if you haven’t already.

Helm is a package manager for Kubernetes. It is a tool that streamlines installing and managing Kubernetes applications. You can install Helm by running the following command:

brew install helm

2 - Install Azure CLI if you haven’t already.

brew install azure-cli
az login

Setup Required Resources

1 - Follow the step from the official documentation to create a resource group and AKS cluster.

2 - Set up a Key Vault

Under the resource group where the AKS cluster is created, create a Key Vault.

Under Settings > Access Configuration, select Vault access policy for permissions model.

Then under Objects > Secrets, create the secrets that will be used in the application.

png

3 - Set up a Container Registry

Under the resource group where the AKS cluster is created, create a Container Registry.

After the container registry is created, make sure you have your docker running locally and authenticate to the container registry by running the following command:

png

az acr login --name myaksapp

az acr update --name myaksapp --admin-enabled true

az acr credential show --name myaksapp

docker login myaksapp.azurecr.io --username myaksapp --password <password2-from-prev-step>

Create an image pull secret

kubectl create secret docker-registry acr-secret \        
  --docker-server=myaksapp.azurecr.io \
  --docker-username=myaksapp \
  --docker-password=<password2-from-prev-step> \
  --docker-email=<your-email> \
  --namespace=automations

Configure AKS

1 - Connect to the AKS cluster by running the following command:

az aks get-credentials --resource-group myAKSResourceGroup --name myAKSCluster

2 - Verify the connection

kubectl get nodes

png

kubectl config get-contexts
kubectl config current-context

png

3 - Create a new namespace for the application (optional)

k create ns automations

4 - Install CSI driver for Azure

helm repo add csi-secrets-store-provider-azure https://azure.github.io/secrets-store-csi-driver-provider-azure/charts
helm install csi csi-secrets-store-provider-azure/csi-secrets-store-provider-azure --namespace kube-system

To verify the installation

kubectl --namespace=kube-system get pods -l "app=secrets-store-csi-driver"
kubectl get crd

5 - Enable Azure Key Vault Provider on AKS

az aks enable-addons --addons azure-keyvault-secrets-provider --name myAKSCluster --resource-group myAKSResourceGroup

To verify the installation

az aks show --resource-group <resource-group> --name <cluster-name> --query addonProfiles.azureKeyvaultSecretsProvider.identity.objectId -o tsv
az aks show --resource-group <resource-group> --name <cluster-name> --query addonProfiles.azureKeyvaultSecretsProvider.identity.clientId -o tsv

So for example, in our case, it would be:

az aks show --resource-group myAKSResourceGroup --name myAKSCluster --query addonProfiles.azureKeyvaultSecretsProvider.identity.objectId -o tsv

az aks show --resource-group myAKSResourceGroup --name myAKSCluster --query addonProfiles.azureKeyvaultSecretsProvider.identity.clientId -o tsv

The object id from the first output will be used to set as the managed identity for the Key Vault access policy.

The client id from the second output will be used in later steps when creating a SecretProviderClass.

Ready to Deploy

Let’s first have a look at the folder structure of the application.

.
├── Dockerfile
├── README.md
├── app
│   ├── helpers
│   │   └── azure_kv.py
│   ├── main.py
│   └── settings.py
├── deploy
│   ├── common
│   │   ├── deployment.yaml
│   │   ├── kustomization.yaml
│   │   └── secretproviderclass.yaml
│   └── production
│       └── kustomization.yaml
├── poetry.lock
├── pyproject.toml
└── skaffold.yaml

The app folder contains the python application. The deploy folder contains the deployment files. The skaffold.yaml file is used to deploy the application. The Dockerfile is used to build the docker image of the application.

The azure_kv.py file contains the code to access the secrets from the Key Vault, it looks like below:

from azure.identity import ManagedIdentityCredential
from azure.keyvault.secrets import SecretClient
import logging


logger = logging.getLogger(__name__)


class AzKeyVault:
    def __init__(self) -> None:
        self.credential = ManagedIdentityCredential(
            client_id="client-id"
        )
        self.key_vault_url = f"https://my-aks-app-kv.vault.azure.net/"
        self.client = SecretClient(
            vault_url=self.key_vault_url,
            credential=self.credential,
            logging_enable=True,
        )

    def get_secret(self, secret):
        secret_response = self.client.get_secret(secret)
        creds = secret_response.value
        return creds


Now for the deployment manifest files.

Starting with the SecretProviderClass, in this case, we can create a secretproviderclass.yaml file under the deploy/common directory.

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:
  name: azure-kvname
  namespace: automations
spec:
  provider: azure
  parameters:
    usePodIdentity: "false"
    useVMManagedIdentity: "true"
    userAssignedIdentityID: "clientid-from-above"
    keyvaultName: "my-aks-app-kv"
    objects: |
      array:
        - |
          objectName: secret1
          objectType: secret
        - |
          objectName: secret2
          objectType: secret      
    tenantId: "tenent-id"

For the deployment.yaml file, we can create a deployment.yaml file under the deploy/common directory. Note that the imagePullSecrets is used to authenticate to the container registry, and it is created from the early step by kubectl create secret docker-registry acr-secret.

The file can look like this:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-aks-app
  labels:
    app: my-aks-app
spec:
  replicas: 1
  selector:
    matchLabels:
      app: my-aks-app
  template:
    metadata:
      labels:
        app: my-aks-app
    spec:
      containers:
        - name: my-aks-app
          image: myaksapp.azurecr.io/my-aks-app:latest
          imagePullPolicy: Always
          resources:
            limits:
              memory: 512Mi
              cpu: 500m
            requests:
              memory: 512Mi
              cpu: 500m
          volumeMounts:
            - name: secrets-store-inline
              mountPath: "/mnt/secrets-store"
              readOnly: true
      volumes:
        - name: secrets-store-inline
          csi:
            driver: secrets-store.csi.k8s.io
            readOnly: true
            volumeAttributes:
              secretProviderClass: "azure-kvname"
      imagePullSecrets:
        - name: acr-secret

Apply SecretProviderClass to the namespace where the pod will be running

kubectl apply -f deploy/common/secretproviderclass.yaml -n automations  

Verification for SecretProviderClass

kubectl get secretproviderclass azure-kvname -n automations -o json

For the actual deployment, we will be using skaflold. Our skaffold.yaml can look like this:

apiVersion: skaffold/v2beta28
kind: Config
metadata:
  name: my-aks-app
build:
  tagPolicy:
    envTemplate:
      template: "{{.IMAGE_NAME}}:lastest"
  artifacts:
  - image: myaksapp.azurecr.io/my-aks-app
    context: .
    docker:
      dockerfile: Dockerfile
      noCache: true
deploy:
  kubeContext: myAKSCluster
  kustomize:
    paths:
    - deploy/common
profiles:
- name: production
  deploy:
    kustomize:
      paths:
      - deploy/production

And to deploy the application, we can run the following command:

kubectl config use-context myAKSCluster
skaffold run -p production -v info

To verify the deployment

kubectl get pods -n automations  

png

And that’s it! You have successfully deployed a python application on Azure Kubernetes Service (AKS).

Thank you for reading and have a nice day!